
CS 329A, Handout #8Nayak

Types of local consistency

• (i, j)-consistency

– any solution to a subproblem of i variables can be extended
to a solution including any j additional variables

• k-consistency

– any solution to a subproblem of k–1 variables can be
extended to a solution including an additional variable

– equivalent to (k, 1)-consistency

– arc consistency is 2-consistency

– path consistency is 3-consistency

• (1, k)-consistency is k inverse consistency

CS 329A, Handout #8Nayak

Time and space complexity

• Both k–consistency and k inverse consistency take time
exponential in k

• In general, k-consistency requires creating and storing
constraints involving k–1 variables

– can require O(dk–1) space

• However, k inverse consistency only filters out values for
variables

– worst case space requirement is linear

– …and can even decrease the space requirement

CS 329A, Handout #8Nayak

Neighborhood inverse consistency

• Let the neighborhood of a variable v consist of the variables
with which v shares a constraint

• Neighborhood inverse consistency enforces for each variable v
k inverse consistency for v and its k–1 neighbors

a, b

a, b, c

a, c

a, c

≠
≠

≠

≠

≠

CS 329A, Handout #8Nayak

Neighborhood inverse consistency
function NIC

Insert each variable v onto agenda A

while A ≠ {} do

v = pop(A) and deleted = false

for each a in dom(v) do
if there is no solution to Nbd(v) with v assigned a then

dom(v) = dom(v) \ {a} and deleted = true

if dom(v) = {} then return “domain wipeout”

endif
if deleted then

for each u in Nbd(v) do A = A ∪ {u}

endwhile

return “consistent”

end NIC

CS 329A, Handout #8Nayak

Constraint graphs

• The primal-constraint graph of a constraint network has

– a node for each variable

– an undirected edge between two nodes if the corresponding
variables occur in the same constraint

• The dual-constraint graph of a constraint network has

– a node for ecah constraint

– an undirected labeled edge between two nodes that share a
common variable

– edges are labeled by the shared variables

CS 329A, Handout #8Nayak

Tree networks

• Constraint networks whose primal graph is a tree

• Can be solved in time linear in the number of variables

x1

x2

x4 x5
x7

x3

x6

CS 329A, Handout #8Nayak

Solving a tree network

procedure tree-algorithm

Generate a rooted tree ordering, d = x1, x2, …, xn

for i = n downto 1 do

revise(xp(i), xi)

if dom(xp(i)) = {} then “no solution exists”

endfor
Use backtracking to instantiate variables along d

end tree-algorithm

CS 329A, Handout #8Nayak

Width

• Given a variable ordering d = x1, x2, …, xn

– the width of a node xi is the number of edges that connect xi
to nodes earlier in the ordering

• The width of an ordering is the maximum width of all nodes

• The width of a graph is the minimum width of all orderings

x3

x1

x5

x4

x2

x1

x2

x3

x4

x5

CS 329A, Handout #8Nayak

Directional consistency

• Given an ordering d, directional i-consistency along d requires
that any consistent instantiation of i–1 variables can be
consistently extended by any variable that succeeds all of them
in the ordering d

– strong directional i consistency also requires directional j
consistency for all j < i

• Theorem: An ordered constraint graph is backtrack free if the
level of directional strong consistency along the order is
greater than the width of the ordering

CS 329A, Handout #8Nayak

Enforcing directional consistency

x1

x2

x3

x4

x5

CS 329A, Handout #8Nayak

Adaptive consistency

procedure Adaptive-consistency

for i = n downto 1 do
Connect all elements in parents(xi)

Perform consistency(xi, parents(xi))

endfor

end Adaptive-consistency

• Topology of induced graph can be found a priori

• Let w*(d) be the width of induced graph

CS 329A, Handout #8Nayak

Nonseparable components

• Separation nodes (or articulation nodes) separate the graph
into nonseparable components (or biconnected components)

C1

C2

C3

C4

A

B
C

D

E

F

G

J

I
H

CS 329A, Handout #8Nayak

Cycle cutset scheme

• Instantiating a variable cuts its own cycles

• When a group of instantiated variables constitutes a cycle
cutset, the remaining network can be solved using the tree
algorithm

x1

x5

x4

x3

x2

x1

x5

x4

x3

x2

x2 x2

